CS 64 Week I Lecture I

Kyle Dewey

Overview

- Administrative stuff
- Class motivation
- Syllabus
- Working with different bases
- Bitwise operations
- Twos complement

Administrative Stuff

About Me

- 5th year Ph.D. candidate, doing programming languages research (automated testing)
- **Not** a professor; just call me Kyle
- Fifth time teaching; second time teaching CS64

About this Class

- See something wrong? Want something improved? Email me about it! (kyledewey@cs.ucsb.edu)
- I generally operate based on feedback

Bad Feedback

- This guy sucks.
- This class is boring.
- This material is useless.

Good Feedback

- This guy sucks, I can't read his writing.
- This class is boring, it's way too slow.
- This material is useless, I don't see how it relates to anything in reality.

I can't fix anything if I don't know what's wrong

Questions

- Which best describes you?
 - CS major
 - ECE major
 - Other

Office Hours Placement

Class Motivation

- • •
- }

• • •

}

• • •

}

• • •

}

3.14956

• • •

More Efficient Algorithms

Why are things still slow?

The magic box isn't so magic

Array Access

arr[x]

- Constant time! (O(I))
- Where the **random** in random access memory comes from!

Array Access

arr[x]

- Constant ti
- Where the memory co

dom access

Array Access

• Memory is loaded as chunks into caches

- Cache access is much faster (e.g., I0x)
- Iterating through an array is fast
- Jumping around any which way is slow
- Can change time complexity if accounted for

• O(N^3) versus ~O(N^4)

int x = a + b; int y = c * d; int z = e - f;

int z = e - f; int y = c * d; int x = a + b;

int x = a + b; int y = c * d; int z = e - f;

3 Milliseconds?

int z = e - f; int y = c * d; int x = a + b;

3 Milliseconds?

- Modern processors are pipelined, and can execute sub-portions of instructions in parallel
 - Depends on when instructions are encountered
- Some can execute whole instructions in different orders
- If your processor is from Intel, it is insane.

The Point

- If you really want performance, you need to know how the magic works
 - "But it scales!" empirically, probably not
 - Chrome is fast for a reason
- If you want to write a naive compiler (CSI60), you need to know some low-level details
- If you want to write a *fast* compiler, you need to know *tons* of low-level details

So Why Digital Design?

So Why Digital Design?

WB Data

So Why Digital Design?

- Basically, circuits are the programming language of hardware
 - Yes, everything goes back to physics

Syllabus

Working with Different Bases

• Question: why exactly does 123 have the value 123? As in, what does it *mean*?

123

2	3

Tuesday, January 5, 16

Tuesday, January 5, 16

• Why did we go to tens? Hundreds?

Answer

• Because we are in decimal (base 10)

Another View

Another View

2	3

Another View

- Involves repeated division by the value of the base
 - From right to left: list the remainders
 - Continue until 0 is reached
 - Final value is result of reading remainders from bottom to top
- For example: what is 231 decimal to decimal?

23 I

Remainder

10 <u>231</u> 23

Remainder

3

Remainder

3

2

- Binary is base 2
- Useful because circuits are either on or off, representable as two states, 0 and 1

Question

Answer

- What is binary 0101 as a decimal number?
 - 5

2 <u>57</u> 28 Remainder

2 <u>57</u> 2 <u>28</u> 14 Remainder

2 <u>57</u> 2 <u>28</u> 2 <u>14</u> 7 Remainder

0

 \mathbf{O}

2 <u>57</u> 2 <u>28</u> 2 <u>4</u> 2 <u>7</u> 3 Remainder

0

2 <u>57</u> 2 <u>28</u> 2 <u>4</u> 2 <u>7</u> 2<u>3</u> Remainder

0

Remainder

 $\left(\right)$

0

Tuesday, January 5, 16

Octal

- Octal is base 8
- Same idea

7	2

Answer: 122

8 <u>182</u> 22 6

Remainder

8 <u>182</u> 6 8 <u>22</u> 6 2 6

Remainder
From Decimal to Octal

8 182 6 6 8 22 8 2 0

Remainder

2

Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
 - Each hexadecimal digit maps to four binary digits
 - Can just memorize a table

Hexadecimal

 Digits 0-9, along with A (10), B (11), C (12), D (13), E (14), F (15)

Α	F

Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal	Binary
0	0000
	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binary
8	1000
9	1001
A (10)	1010
B (II)	1011
C (12)	1100
D (13)	1101
E (14)	1110
F (15)	

Bitwise Operations

Bitwise AND

- Similar to logical AND (& &), except it works on a bit-by-bit manner
- Denoted by a single ampersand: &

(1001 & 0101) = 0001

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

(1001 | 0101)= 1101

Bitwise XOR

- Exclusive OR, denoted by a carat: ^
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0

 $(1001 ^{0}) = 1100$

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: \sim

 $\sim 1001 = 0110$

• Move all the bits N positions to the left, subbing in N 0s on the right

• Move all the bits N positions to the left, subbing in N 0s on the right

1001

• Move all the bits N positions to the left, subbing in N 0s on the right

1001 << 2 = 100100

- Useful as a restricted form of multiplication
- Question: how?

$$1001 << 2 =$$

 100100

Shift Left as Multiplication

• Equivalent decimal operation:

234

Shift Left as Multiplication

• Equivalent decimal operation:

Shift Left as Multiplication

• Equivalent decimal operation:

Multiplication

- Shifting left N positions multiplies by (base) $^{\rm N}$
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

234 << 2 = 23400

Shift Right

- Move all the bits N positions to the right, subbing in either N 0s or N 1s on the left
 - Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
 - Two different forms
 - 1001 >> 2 = either 0010 or 1110

• Question: If shifting left multiplies, what does shift right do?

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

234

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called "arithmetic" shift right?

1100 (arithmetic)>> 1 = 1110

Answer...Sort of

 Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question: What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative

Decimal to Twos Complement

• Example: -5 decimal to binary (twos complement)

Decimal to Twos Complement

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation
- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

• Then, take the bits, and negate them

• Then, take the bits, and negate them

Then, take the bits, and negate them
~0101 =

1010 + 1 = 1011

 $\sim 1011 = 0100$

0100 + 1 = 0101

Where Is Twos Complement From?

- Intuition: try to subtract I from 0, in decimal
 - Involves borrowing from an invisible number on the left
 - Twos complement is based on the same idea