CS 64 Week | Lecture 2

Kyle Dewey

Overview

- Wrapping up working with different bases
- Bitwise operations
- Two's complement
- Addition
- Subtraction
- Multiplication (if time)

Wrapping Up Working with Different Bases

Hexadecimal

- Base 16
- Binary is horribly inconvenient to write out
- Easier to convert between hexadecimal (which is more convenient) and binary
 - Each hexadecimal digit maps to four binary digits
 - Can just memorize a table

Hexadecimal

 Digits 0-9, along with A (10), B (11), C (12), D (13), E (14), F (15)

Α	F

Hexadecimal to Binary

- Previous techniques all work, using decimal as an intermediate
- The faster way: memorize a table (which can be easily reconstructed)

Hexadecimal to Binary

Hexadecimal	Binary
0	0000
	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111

Hexadecimal	Binary
8	1000
9	1001
A (10)	1010
B (II)	1011
C (12)	1100
D (13)	1101
E (14)	1110
F (15)	

Bitwise Operations

Bitwise AND

- Similar to logical AND (& &), except it works on a bit-by-bit manner
- Denoted by a single ampersand: &

(1001 & 0101) = 0001

Bitwise OR

- Similar to logical OR (||), except it works on a bit-by-bit manner
- Denoted by a single pipe character: |

(1001 | 0101)= 1101

Bitwise XOR

- Exclusive OR, denoted by a carat: ^
- Similar to bitwise OR, except that if both inputs are 1 then the result is 0

 $(1001 ^{0}) = 1100$

Bitwise NOT

- Similar to logical NOT (!), except it works on a bit-by-bit manner
- Denoted by a tilde character: \sim

 $\sim 1001 = 0110$

• Move all the bits N positions to the left, subbing in N 0s on the right

• Move all the bits N positions to the left, subbing in N 0s on the right

1001

• Move all the bits N positions to the left, subbing in N 0s on the right

1001 << 2 = 100100

- Useful as a restricted form of multiplication
- Question: how?

$$1001 << 2 =$$

 100100

Shift Left as Multiplication

• Equivalent decimal operation:

234

Shift Left as Multiplication

• Equivalent decimal operation:

Shift Left as Multiplication

• Equivalent decimal operation:

Multiplication

- Shifting left N positions multiplies by (base) $^{\rm N}$
- Multiplying by 2 or 4 is often necessary (shift left 1 or 2 positions, respectively)
- Often a whooole lot faster than telling the processor to multiply
- Compilers try hard to do this

234 << 2 = 23400

Shift Right

- Move all the bits N positions to the right, subbing in either N 0s or N 1s on the left
 - Two different forms

Shift Right

- Move all the bits N positions to the right, subbing in either N Os or N (whatever the leftmost bit is)s on the left
 - Two different forms
 - 1001 >> 2 = either 0010 or 1110

• Question: If shifting left multiplies, what does shift right do?

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

234

- Question: If shifting left multiplies, what does shift right do?
 - Answer: divides in a similar way, but truncates result

Two Forms of Shift Right

- Subbing in 0s makes sense
- What about subbing in the leftmost bit?
 - And why is this called "arithmetic" shift right?

1100 (arithmetic)>> 1 = 1110

Answer...Sort of

 Arithmetic form is intended for numbers in twos complement, whereas the nonarithmetic form is intended for unsigned numbers

Twos Complement

Problem

- Binary representation so far makes it easy to represent positive numbers and zero
- Question: What about representing negative numbers?

Twos Complement

- Way to represent positive integers, negative integers, and zero
- If 1 is in the most significant bit (generally leftmost bit in this class), then it is negative
• Example: -5 decimal to binary (twos complement)

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

- Example: -5 decimal to binary (twos complement)
- First, convert the magnitude to an unsigned representation

5 (decimal) = 0101 (binary)

• Then, take the bits, and negate them

• Then, take the bits, and negate them

0101

Then, take the bits, and negate them
~0101 =

1010

1010

1010 + 1 = 1011

1011

 $\sim 1011 = 0100$

0100

0100 + 1 = 0101

Where Is Twos Complement From?

- Intuition: try to subtract I from 0, in decimal
 - Involves borrowing from an invisible number on the left
 - Twos complement is based on the same idea

Another View

Modular arithmetic, with the convention that a leading 1 bit means negative

Another View

 Modular arithmetic, with the convention that a leading 1 bit means negative

Another View

 Modular arithmetic, with the convention that a leading 1 bit means negative

Consequences

• What is the negation of 000?

Consequences

• What is the negation of 100?

Arithmetic Shift Right

- Not exactly division by a power of two
- Consider -3 / 2

Addition

• Question: how might we add the following, in decimal?

• Question: how might we add the following, in decimal?

	6
	+3
	— —
	?

• Question: how might we add the following, in decimal?

• Question: how might we add the following, in decimal?

Carry: 1	8	6
	+2	+3
	0	9

• Question: how might we add the following, in decimal?

• Question: how might we add the following, in decimal?

• Question: how might we add the following, in decimal?

Core Concepts

- We have a "primitive" notion of adding single digits, along with an idea of *carrying* digits
- We can build on this notion to add numbers together that are more than one digit long

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Now in Binary

• Arguably simpler - fewer one-bit possibilities

Chaining the Carry

Also need to account for any input carry

• How might we add the numbers below?

0110 011 +001 _____

• How might we add the numbers below?

Tuesday, January 5, 16

111 +001

0 111 +001

10 111 +001 _____

Tuesday, January 5, 16

110 111 +001 -----

Output Carry Bit Significance

- For unsigned numbers, it indicates if the result did not fit all the way into the number of bits allotted
- May be an error condition for software

Signed Addition

• Question: what is the result of the following operation?

Signed Addition

• Question: what is the result of the following operation?

011 +011 ----0111

Overflow

• In this situation, overflow occurred: this means that both the operands had the same sign, and the result's sign differed

• Possibly a software error

Overflow vs. Carry

- These are **different ideas**
 - Carry is relevant to **unsigned** values
 - Overflow is relevant to **signed** values

Subtraction

Subtraction

- Have been saying to invert bits and add one to second operand
- Could do it this way in hardware, but there is a trick

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add 1 and once to add the other result)
- How can we do this easily?

Subtraction Trick

- Assume we can cheaply invert bits, but we want to avoid adding twice (once to add 1 and once to add the other result)
- How can we do this easily?
 - Set the initial carry to 1 instead of 0

0101 -0011

Multiplication (if time)

Multiplication

- For simplicity, we will only consider positive values here
- A number of different algorithms exist; we will only look at one of them

Central Idea

- Accumulate a *partial product*: the result of the multiplication as we go on
 - Computed via a series of additions
- When we are finished, the partial product becomes the final product (the result)
- Build off of addition and multiplication of a single digit (much like with addition)

Decimal Algorithm

- Let ${\rm P}$ be the partial product, ${\rm M}$ be the multiplicand, and ${\rm N}$ be the multiplier
- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Example

• Performing 803 * 151

Performing 803 * 151

Р	M	N

Performing 803 * 151

Р	Μ	N
0	803	151

Initially P = 0, N = multiplicand M = multiplier

Performing 803 * 151

Р	М	N
0	803	151

N is not 0
Р	М	N
0	803	15 <mark>1</mark>
803		

P += (the rightmost digit of N) times M

Р	Μ	N
0	803	151
803	803 <mark>0</mark>	15

Shift N right once, and M left once

Р	М	N
0	803	151
803	8030	15

N is not 0

Р	Μ	N
0	803	151
803	8030	15
40953		

P += (the rightmost digit of ℕ) times M

Р	Μ	N
0	803	151
803	8030	15
40953	8030 <mark>0</mark>	1

Shift N right once, and M left once

Р	Μ	N
0	803	151
803	8030	15
40953	80300	1

N is not 0

	N	М	Р
	151	803	0
	15	8030	803
<pre>P += (the rightmos digit of N) times M</pre>	1	80300	40953
			121253

	N	М	Р
	151	803	0
	15	8030	803
Shift N right once, and M left once	1	80300	40953
	0	80300 <mark>0</mark>	121253

Р	M	N
0	803	151
803	8030	15
40953	80300	1
121253	803000	0

N is 0; done

Intuition

- Only looking at rightmost digit of N: getting partial product of that digit with the rest
- Shifting M left: for each digit of N observed, we look one digit deeper in M (and result gets correspondingly larger)
- Similar to traditional pencil-and-paper algorithm (which shifts partial products instead)

Why this Algorithm?

- Looks complex...ish
- On binary, things get simpler. Why?

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Why this Algorithm?

- Looks complex...ish
- On binary, things get simpler. Why?

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Simplified Binary Algorithm

- Initially, P is 0
- If N is 0, then P = the result
- If not, then P += (the rightmost digit of N) times M
- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Simplified Binary Algorithm

- Initially, P is 0
- If N is 0, then P = the result
- If the rightmost digit if ${\rm N}$ is 1:

• P += M

- Shift ${\rm N}$ right once, and ${\rm M}$ left once
- Repeat

Dealing with Negative Numbers

• Can still be done, but we need extra logic

- Negative times negative is a positive, positive and a negative is a positive...
- Not fundamentally harder, and showing this extra detail just complicates things in an uninteresting way