
CS 64 Week 1 Lecture 2
Kyle Dewey

Tuesday, January 5, 16

Overview

• Wrapping up working with different bases

• Bitwise operations

• Two’s complement

• Addition

• Subtraction

• Multiplication (if time)

Tuesday, January 5, 16

Wrapping Up Working
with Different Bases

Tuesday, January 5, 16

Hexadecimal

• Base 16

• Binary is horribly inconvenient to write out

• Easier to convert between hexadecimal
(which is more convenient) and binary

• Each hexadecimal digit maps to four
binary digits

• Can just memorize a table

Tuesday, January 5, 16

Hexadecimal

• Digits 0-9, along with A (10), B (11), C (12),
D (13), E (14), F (15)

Tuesday, January 5, 16

Hexadecimal Example

• What is 1AF hexadecimal in decimal?

Tuesday, January 5, 16

Hexadecimal Example

FA1

Tuesday, January 5, 16

Hexadecimal Example

FA1

OnesSixteensTwo-fifty-sixes

Tuesday, January 5, 16

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160
OnesSixteensTwo-fifty-sixes

Tuesday, January 5, 16

Hexadecimal Example

FA1

1 x 162 10 x 161 15 x 160
OnesSixteensTwo-fifty-sixes

256

16 16 16 16 16
16 16 16 16 16

(160)

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

(15)
Tuesday, January 5, 16

Hexadecimal to Binary

• Previous techniques all work, using decimal
as an intermediate

• The faster way: memorize a table (which
can be easily reconstructed)

Tuesday, January 5, 16

Hexadecimal to Binary

Hexadecimal Binary

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111

Hexadecimal Binary

8 1000
9 1001

A (10) 1010
B (11) 1011
C (12) 1100
D (13) 1101
E (14) 1110
F (15) 1111

Tuesday, January 5, 16

Bitwise Operations

Tuesday, January 5, 16

Bitwise AND

• Similar to logical AND (&&), except it
works on a bit-by-bit manner

• Denoted by a single ampersand: &

(1001 &
 0101)=
 0001

Tuesday, January 5, 16

Bitwise OR

• Similar to logical OR (||), except it works
on a bit-by-bit manner

• Denoted by a single pipe character: |

(1001 |
 0101)=
 1101

Tuesday, January 5, 16

Bitwise XOR

• Exclusive OR, denoted by a carat: ^

• Similar to bitwise OR, except that if both
inputs are 1 then the result is 0

(1001 ^
 0101)=
 1100

Tuesday, January 5, 16

Bitwise NOT

• Similar to logical NOT (!), except it works
on a bit-by-bit manner

• Denoted by a tilde character: ~

~1001 =
 0110

Tuesday, January 5, 16

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

Tuesday, January 5, 16

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001

Tuesday, January 5, 16

Shift Left

• Move all the bits N positions to the left,
subbing in N 0s on the right

1001 << 2 =
100100

Tuesday, January 5, 16

Shift Left

• Useful as a restricted form of multiplication

• Question: how?

1001 << 2 =
100100

Tuesday, January 5, 16

Shift Left as
Multiplication

• Equivalent decimal operation:

234

Tuesday, January 5, 16

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

Tuesday, January 5, 16

Shift Left as
Multiplication

• Equivalent decimal operation:

234 << 1 =
2340

234 << 2 =
23400

Tuesday, January 5, 16

Multiplication
• Shifting left N positions multiplies by
(base)N

• Multiplying by 2 or 4 is often necessary
(shift left 1 or 2 positions, respectively)

• Often a whooole lot faster than telling the
processor to multiply

• Compilers try hard to do this

234 << 2 =
23400

Tuesday, January 5, 16

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N 1s on the left

• Two different forms

Tuesday, January 5, 16

Shift Right

• Move all the bits N positions to the right,
subbing in either N 0s or N (whatever the
leftmost bit is)s on the left

• Two different forms
1001 >> 2 =
either 0010 or 1110

Tuesday, January 5, 16

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

Tuesday, January 5, 16

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

Tuesday, January 5, 16

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234

Tuesday, January 5, 16

Shift Right Trick

• Question: If shifting left multiplies, what
does shift right do?

• Answer: divides in a similar way, but
truncates result

234 >> 1 =
23

Tuesday, January 5, 16

Two Forms of Shift
Right

• Subbing in 0s makes sense

• What about subbing in the leftmost bit?

• And why is this called “arithmetic” shift
right?

1100 (arithmetic)>> 1 =
1110

Tuesday, January 5, 16

Answer...Sort of

• Arithmetic form is intended for numbers in
twos complement, whereas the non-
arithmetic form is intended for unsigned
numbers

Tuesday, January 5, 16

Twos Complement

Tuesday, January 5, 16

Problem

• Binary representation so far makes it easy
to represent positive numbers and zero

• Question: What about representing
negative numbers?

Tuesday, January 5, 16

Twos Complement

• Way to represent positive integers, negative
integers, and zero

• If 1 is in the most significant bit (generally
leftmost bit in this class), then it is negative

Tuesday, January 5, 16

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

Tuesday, January 5, 16

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

Tuesday, January 5, 16

Decimal to Twos
Complement

• Example: -5 decimal to binary (twos
complement)

• First, convert the magnitude to an unsigned
representation

5 (decimal) = 0101 (binary)

Tuesday, January 5, 16

Decimal to Twos
Complement

• Then, take the bits, and negate them

Tuesday, January 5, 16

Decimal to Twos
Complement

• Then, take the bits, and negate them

0101

Tuesday, January 5, 16

Decimal to Twos
Complement

• Then, take the bits, and negate them

~0101 =
 1010

Tuesday, January 5, 16

Decimal to Twos
Complement

• Finally, add one:

Tuesday, January 5, 16

Decimal to Twos
Complement

• Finally, add one:

1010

Tuesday, January 5, 16

Decimal to Twos
Complement

• Finally, add one:
1010 + 1 =
1011

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

1011

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

~1011 =
 0100

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101

Tuesday, January 5, 16

Twos Complement to
Decimal

• Same operation: negate the bits, and add
one

0100 + 1 =
0101 =
-5

We started with
1011 - negative

Tuesday, January 5, 16

Where Is Twos
Complement From?

• Intuition: try to subtract 1 from 0, in
decimal

• Involves borrowing from an invisible
number on the left

• Twos complement is based on the same
idea

Tuesday, January 5, 16

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

Tuesday, January 5, 16

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

(least +)(least -)

(most +)

(most -)

(zero)

Tuesday, January 5, 16

Another View
• Modular arithmetic, with the convention that a

leading 1 bit means negative

000

001

010

011

100

101

110

111
Denotes
+1

1

0

2

3

-4

-3

-2

-1

Tuesday, January 5, 16

Negation of 1

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Negation of 1

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Negation of 1

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Negation of 1

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Consequences

• What is the negation of 000?

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Consequences

• What is the negation of 100?

000

001

010

011

100

101

110

111

Tuesday, January 5, 16

Arithmetic Shift Right
• Not exactly division by a power of two

• Consider -3 / 2

000

001

010

011

100

101

110

111 1

0

2

3

-4

-3

-2

-1

Tuesday, January 5, 16

Addition

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
?

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
?

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

Carry: 1

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
?

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

Carry: 1

Tuesday, January 5, 16

Building Up Addition
• Question: how might we add the following,

in decimal?
986

+123

?

6
+3
--
9

8
+2
--
0

1
9

+1
--
1

1
+0
--
1

Tuesday, January 5, 16

Core Concepts

• We have a “primitive” notion of adding
single digits, along with an idea of carrying
digits

• We can build on this notion to add
numbers together that are more than one
digit long

Tuesday, January 5, 16

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
?

0
+1
--
?

1
+0
--
?

1
+1
--
?

Tuesday, January 5, 16

Now in Binary

• Arguably simpler - fewer one-bit possibilities

0
+0
--
0

0
+1
--
1

1
+0
--
1

1
+1
--
0

Carry: 1
Tuesday, January 5, 16

Chaining the Carry
• Also need to account for any input carry

1
0

+0
--
1

1
0

+1
--
0

1
1

+0
--
0

1
1

+1
--
1

0
0

+0
--
0

0
0

+1
--
1

0
1

+0
--
1

0
1

+1
--
0

Carry: 1 Carry: 1 Carry: 1

Carry: 1

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

Tuesday, January 5, 16

Adding Multiple Bits

• How might we add the numbers below?

 011
+001

0

0

1

0

1

1

0

Output Carry Bit Result Bits

Tuesday, January 5, 16

Another Example

 111
+001

Tuesday, January 5, 16

Another Example

 111
+001

0

Tuesday, January 5, 16

Another Example

 111
+001

0

0

1

Tuesday, January 5, 16

Another Example

 111
+001

0

0

1

0

1

Tuesday, January 5, 16

Another Example

 111
+001

0

0

1

0

1

0

1

Output Carry Bit Result Bits

Tuesday, January 5, 16

Output Carry Bit
Significance

• For unsigned numbers, it indicates if the
result did not fit all the way into the
number of bits allotted

• May be an error condition for software

Tuesday, January 5, 16

Signed Addition

• Question: what is the result of the
following operation?

011
+011

?

Tuesday, January 5, 16

Signed Addition

• Question: what is the result of the
following operation?

011
+011

0111

Tuesday, January 5, 16

Overflow

• In this situation, overflow occurred: this
means that both the operands had the
same sign, and the result’s sign differed

011
+011

110

• Possibly a software error

Tuesday, January 5, 16

Overflow vs. Carry
• These are different ideas

• Carry is relevant to unsigned values

• Overflow is relevant to signed values

011
+011

111

Overflow;
No Carry

111
+001

000

No Overflow;
Carry

111
+100

011

Overflow;
Carry

001
+001

010

No Overflow;
No Carry

Tuesday, January 5, 16

Subtraction

Tuesday, January 5, 16

Subtraction

• Have been saying to invert bits and add one
to second operand

• Could do it this way in hardware, but there
is a trick

001
-001

?

001
+111

?

Hint: these two
questions are

equivalent

Tuesday, January 5, 16

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

Tuesday, January 5, 16

Subtraction Trick

• Assume we can cheaply invert bits, but we
want to avoid adding twice (once to add 1
and once to add the other result)

• How can we do this easily?

• Set the initial carry to 1 instead of 0

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Invert 0011

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Invert 0011
1100

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

Tuesday, January 5, 16

Subtraction Example

0101
-0011

Invert 0011
1100

Equivalent to
0101

+1100

1

0

1

1

0

0

1

0

1

Tuesday, January 5, 16

Multiplication (if time)

Tuesday, January 5, 16

Multiplication

• For simplicity, we will only consider positive
values here

• A number of different algorithms exist; we
will only look at one of them

Tuesday, January 5, 16

Central Idea

• Accumulate a partial product: the result of
the multiplication as we go on

• Computed via a series of additions

• When we are finished, the partial product
becomes the final product (the result)

• Build off of addition and multiplication of a
single digit (much like with addition)

Tuesday, January 5, 16

Decimal Algorithm
• Let P be the partial product, M be the

multiplicand, and N be the multiplier

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N)
times M

• Shift N right once, and M left once

• Repeat
Tuesday, January 5, 16

Example
• Performing 803 * 151

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151
Initially P = 0,
N = multiplicand
M = multiplier

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151 N is not 0

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803

P += (the rightmost
digit of N) times M

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

Shift N right once, and
M left once

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15 N is not 0

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953

P += (the rightmost
digit of N) times M

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

Shift N right once, and
M left once

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1 N is not 0

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253

P += (the rightmost
digit of N) times M

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253 803000 0

Shift N right once, and
M left once

Tuesday, January 5, 16

Example
• Performing 803 * 151

P M N

0 803 151

803 8030 15

40953 80300 1

121253 803000 0 N is 0; done

Tuesday, January 5, 16

Intuition

• Only looking at rightmost digit of N: getting
partial product of that digit with the rest

• Shifting M left: for each digit of N observed,
we look one digit deeper in M (and result
gets correspondingly larger)

• Similar to traditional pencil-and-paper
algorithm (which shifts partial products
instead)

Tuesday, January 5, 16

Why this Algorithm?
• Looks complex...ish

• On binary, things get simpler. Why?

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat
Tuesday, January 5, 16

Why this Algorithm?
• Looks complex...ish

• On binary, things get simpler. Why?

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat
Tuesday, January 5, 16

Simplified Binary Algorithm

• Initially, P is 0

• If N is 0, then P = the result

• If not, then P += (the rightmost digit of N) times M

• Shift N right once, and M left once

• Repeat

Tuesday, January 5, 16

Simplified Binary Algorithm

• Initially, P is 0

• If N is 0, then P = the result

• If the rightmost digit if N is 1:

•P += M

• Shift N right once, and M left once

• Repeat

Tuesday, January 5, 16

Dealing with Negative
Numbers

• Can still be done, but we need extra logic

• Negative times negative is a positive,
positive and a negative is a positive...

• Not fundamentally harder, and showing this
extra detail just complicates things in an
uninteresting way

Tuesday, January 5, 16

