
CS64 Week 2 Lecture 2
Kyle Dewey



Overview

• MIPS

•syscall

• Psuedoinstructions

• Branches

• Memory introduction



MIPS



Why MIPS?

• Relevant in the embedded systems domain

• All processors share the same core 
concepts as MIPS, just with extra stuff

• ...but most importantly...



It’s Simpler

• RISC (reduced instruction set computing)

• Dozens of instructions as opposed to 
hundreds

• Lack of redundant instructions or 
special cases

• Five stage pipeline versus 24 stages



Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1



Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

load immediate: put the 
given value into a register

$t0: temporary register 0



Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

load immediate: put the 
given value into a register

$t1: temporary register 1



Code on MIPS

x = 5;
y = 7;
z = x + y;

Original MIPS

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

add: add the rightmost 
registers, putting the result 
in the first register

$t2: temporary register 2



Available Registers

• 32 registers in all

• For the moment, we will only consider 
registers $t0 - $t9



Assembly

• The code that you see below is MIPS 
assembly

• Assembly is *almost* what the machine 
sees.  For the most part, it is a direct 
translation to binary from here (known as 
machine code) 

li $t0, 5
li $t1, 7
add $t2, $t0, $t1



Workflow

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

Assembly

Assembler
(analogous to a compiler)

001101....

Machine Code



Machine Code

• This is what the process actually executes 
and accepts as input

• Each instruction is represented with 32 bits

• Three different instruction formats; for the 
moment, we’ll only look at the R format

add $t2, $t0, $t1



Registers
---------------------------
$t0: ?
$t1: ?
$t2: ?

Program Counter
----------------------
?

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
?

Instruction Register
----------------------------------
?



Registers
---------------------------
$t0: ?
$t1: ?
$t2: ?

Program Counter
----------------------
0

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
?



Registers
---------------------------
$t0: ?
$t1: ?
$t2: ?

Program Counter
----------------------
0

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t0, 5



Registers
---------------------------
$t0: 5
$t1: ?
$t2: ?

Program Counter
----------------------
0

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t0, 5



Registers
---------------------------
$t0: 5
$t1: ?
$t2: ?

Program Counter
----------------------
4

Arithmetic Logic Unit
---------------------------
0 + 4 = 4

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t0, 5



Registers
---------------------------
$t0: 5
$t1: ?
$t2: ?

Program Counter
----------------------
4

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t1, 7



Registers
---------------------------
$t0: 5
$t1: 7
$t2: ?

Program Counter
----------------------
4

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t1, 7



Registers
---------------------------
$t0: 5
$t1: 7
$t2: ?

Program Counter
----------------------
8

Arithmetic Logic Unit
---------------------------
4 + 4 = 8

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
li $t1, 7



Registers
---------------------------
$t0: 5
$t1: 7
$t2: ?

Program Counter
----------------------
8

Arithmetic Logic Unit
---------------------------
?

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
add $t2, $t0, $t1



Registers
---------------------------
$t0: 5
$t1: 7
$t2: ?

Program Counter
----------------------
8

Arithmetic Logic Unit
---------------------------
5 + 7 = 12

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
add $t2, $t0, $t1



Registers
---------------------------
$t0: 5
$t1: 7
$t2: 12

Program Counter
----------------------
8

Arithmetic Logic Unit
---------------------------
5 + 7 = 12

Memory
-------------------------------------
0: li $t0, 5
4: li $t1, 7
8: add $t2, $t0, $t1

Instruction Register
----------------------------------
add $t2, $t0, $t1



Adding More 
Functionality

• We need a way to display the result

• What does this entail?



Adding More 
Functionality

• We need a way to display the result

• What does this entail?

• Input / output.  This entails talking to 
devices, which the operating system 
handles

• We need a way to tell the operating 
system to kick in



Talking to the OS

• We are going to be running on a MIPS 
emulator, SPIM

• We cannot directly access system libraries 
(they aren’t even in the same machine 
language)

• How might we print something?



SPIM Routines

• MIPS features a syscall instruction, 
which triggers a software interrupt, or 
exception

• Outside of an emulator, these pause the 
program and tell the OS to check 
something

• Inside the emulator, it tells the emulator 
to check something



syscall

• So we have the OS/emulator’s attention.  
But how does it know what we want?



syscall

• So we have the OS/emulator’s attention.  
But how does it know what we want?

• It has access to the registers

• Put special values in the registers to 
indicate what you want



(Finally) Printing an 
Integer

• For SPIM, if register $v0 contains 1, then it 
will print whatever integer is stored in 
register $a0

• Note that $v0 and $a0 are distinct from 
$t0 - $t9



Augmenting with 
Printing

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

li $v0, 1
move $a0, $t2
syscall



Exiting

• If you are using SPIM, then you need to say 
when you are done as well

• How might this be done?



Exiting

• If you are using SPIM, then you need to say 
when you are done as well

• How might this be done?

•syscall with a special value in $v0 
(specifically 10 decimal)



Augmenting with Exiting

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

li $v0, 1
move $a0, $t2
syscall

li $v0, 10
syscall



Making it a Full 
Program

• Everything is just a bunch of bits

• We need to tell the assembler which bits 
should be placed where in memory





Allocated as 
Program Runs



Code

Mutable Global
Variables

Constants
(e.g., strings)

Everything 
Below is 

Allocated at
Program Load

Allocated as 
Program Runs



Marking Code
• Use a .text directive to specify code

.text

li $t0, 5
li $t1, 7
add $t2, $t0, $t1

li $v0, 1
move $a0, $t2
syscall

li $v0, 10
syscall



Running With SPIM
(add2.asm)



move Instruction

• The move instruction does not actually 
show up in SPIM

• It is a pseudoinstruction which is translated 
into an actual instruction

move $a0, $t2 addu $a0, $zero, $t2

Original Actual



$zero

• Specified like a normal register, but does 
not behave like a normal register

• Writes to $zero are not saved

• Reads from $zero always return 0



But why?

• Why have move as a pseudoinstruction 
instead of as an actual instruction?



But why?

• Why have move as a pseudoinstruction 
instead of as an actual instruction?

• One less instruction to worry about

• One design goal of RISC is to cut out 
redundancy



load intermediate

• The li instruction does not actually show 
up in SPIM

• It is a pseudoinstruction which is translated 
into actual instructions

• Why might li work this way?

• Hint: instructions and registers are 
both 32 bits long



load intermediate

• The li instruction does not actually show 
up in SPIM

• It is a pseudoinstruction which is translated 
into actual instructions

• Why might li work this way?

• Not enough room in one instruction to 
fit everything within 32 bits

• I-type instructions only hold 16 bits



Assembly Coding 
Strategy

• Best to write it in C-like language, then 
translate down by hand

• This gets more complex when we get into 
control structures and memory

x = 5;
y = 7;
z = x + y;

li $t0, 5
li $t1, 7
add $t2, $t0, $t1



More Examples

•swap.asm

•negate.asm

•mult80.asm

•div80.asm



Control Structure 
Examples

•max.asm

•sort2.asm

•add_0_to_n.asm



Branches



Conditionals

• Using all the instructions learned so far, 
how might we code up the following?

if (x == 0) {
  printf(“x is zero”);
}



Conditionals

• Using all the instructions learned so far, 
how might we code up the following?

if (x == 0) {
  printf(“x is zero”);
}

Answer: We can’t (realistically).



Handling Conditionals

• What do we need to implement this?

if (x == 0) {
  printf(“x is zero”);
}



Handling Conditionals

• What do we need to implement this?

• A way to compare numbers

• A way to conditionally execute code

if (x == 0) {
  printf(“x is zero”);
}



Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal 
(beq) and branch-on-not-equal (bne)

• Do we need anything else?



Relevant Instructions

• Comparing numbers: set-less-than (slt)

• Conditional execution: branch-on-equal 
(beq) and branch-on-not-equal (bne)

• Do we need anything else?

• This is sufficient



if (x == 0) {
  printf(“x is zero”);
}

.data
x_is_zero:
  .asciiz “x is zero”

.text
  bne $t0, $zero, after_print
  li $v0, 4
  la $a0, x_is_zero
  syscall
after_print:
  li $v0, 10
  syscall



Loops

• How might we translate the following to 
assembly?

sum = 0;
while (n != 0) {
  sum = sum + n;
  n--;
}



Control Structure 
Examples

•max.asm

•sort2.asm

•add_0_to_n.asm



Memory



Accessing Memory

• Two base instructions: load-word (lw) and 
store-word (sw)

• MIPS lacks instructions that do more with 
memory than access it (e.g., retrieve 
something from memory and add)

• Mark of RISC architecture



Global Variables

• Typically, global variables are placed directly 
in memory, not registers

• Why might this be?



Global Variables

• Typically, global variables are placed directly 
in memory, not registers

• Why might this be?

• Not enough registers


