
CS64 Week 5 Lecture 1
Kyle Dewey

Overview

• More branches in MIPS

• Memory in MIPS

• MIPS Calling Convention

More Branches in MIPS

•else_if.asm

•nested_if.asm

•nested_else_if.asm

Memory in MIPS

Accessing Memory

• Two base instructions: load-word (lw) and
store-word (sw)

• MIPS lacks instructions that do more with
memory than access it (e.g., retrieve
something from memory and add)

• Mark of RISC architecture

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

Global Variables

• Typically, global variables are placed directly
in memory, not registers

• Why might this be?

• Not enough registers

Global Variable Example

•access_global.asm

Arrays

• Question: as far as memory is concerned,
what is the major difference between an
array and a global variable?

Arrays

• Question: as far as memory is concerned,
what is the major difference between an
array and a global variable?

• Arrays contain multiple elements

Array Examples

•print_array1.asm

•print_array2.asm

•print_array3.asm

-print_array1.asm: typical index-based loop
-print_array2.asm: slightly optimized form of print_array1.asm
-print_array3.asm: pointer arithmetic based loop, with fewer instructions

MIPS Calling
Convention

Functions

• Up until this point, we have not discussed
functions

• Why not?

Functions

• Up until this point, we have not discussed
functions

• Why not?

• Memory is a must for the call stack

• ...though we can make some progress
without it

-Because of things like recursion, we generally don’t even know ahead of time how many
variables we are going to need. This is what we have the stack for.

Implementing Functions

• What capabilities do we need for functions?

Implementing Functions

• What capabilities do we need for functions?

• Ability to execute code elsewhere

• Way to pass arguments

• Way to return values

Implementing Functions

• What capabilities do we need for functions?

• Ability to execute code elsewhere -
branches and jumps

• Way to pass arguments - registers

• Way to return values - registers

Jumping to Code

• We have ways to jump to code

• What about jumping back?

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Jumping to Code
• We have ways to jump to code

• What about jumping back?

• Need a way to save where we were

• What might this entail on MIPS?

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Jumping to Code
• We have ways to jump to code

• What about jumping back?

• Need a way to save where we were

• What might this entail on MIPS?

• A way to store the program counter

void foo() {
 bar();
 baz();
}

void bar() {
 ...
}

void baz() {
 ...
}

Calling Functions on
MIPS

• Two crucial instructions: jal and jr

• jal (jump-and-link) will simultaneously
jump to an address, and store the location
of the next instruction in register $ra

• jr (jump-register) will jump to the address
stored in a register, often $ra

Calling Functions on
MIPS

•simple_call.asm

Passing and Returning
Values

• We want to be able to call arbitrary
functions without knowing the
implementation details

• How might we achieve this?

Passing and Returning
Values

• We want to be able to call arbitrary
functions without knowing the
implementation details

• How might we achieve this?

• Designate specific registers for
arguments and return values

Passing and Returning
Values on MIPS

• Registers $a0 - $a3: argument
registers, for passing function arguments

• Registers $v0, $v1: return registers, for
passing return values

Passing and Returning
Values on MIPS

•print_ints.asm

•add_ints.asm

Problem
• What about this code makes this setup

break?

void foo() {
 bar();
}
void bar() {
 baz();
}
void baz() {}

Problem
• What about this code makes this setup

break?

• Need multiple copies of $ra

void foo() {
 bar();
}
void bar() {
 baz();
}
void baz() {}

-We’d have to copy the value of $ra to another register before calling another function
-This can be done, but eventually we’re going to run out of registers. Call stacks more than
32 functions deep are common in practice, so we can’t possibly store everything in registers

Another Problem
• What about this code makes this setup

break?

void foo() {
 int a0, a1, ..., a20;
 bar();
}
void bar() {
 int a21, a22, ..., a40;
}

Another Problem
• What about this code makes this setup

break?

• Can’t fit all variables in registers at the
same time. How do I know which
registers are even usable without
looking at the code?

void foo() {
 int a0, a1, ..., a20;
 bar();
}
void bar() {
 int a21, a22, ..., a40;
}

-With knowing which registers are usable, both foo and bar can’t use, say, $t0 at the same
time, or else they might step on each other’s toes. If foo sets $t0 to some value and then
calls bar, if bar sets $t0 to some other value, then this might mess things up in foo when bar
returns if foo still needs the value in $t0

Solution

• Store certain information in memory at
certain times

• Ultimately, this is where the call stack
comes from

Who saves what?

• Certain registers are designated to be
preserved across a call

• Preserved registers are saved by the
function called (e.g., $s0 - $s7)

• Non-preserved registers are saved by
the caller of the function (e.g., $t0 -
$t9)

• Question: why a split?

Who saves what?

• Certain registers are designated to be
preserved across a call

• Preserved registers are saved by the
function called (e.g., $s0 - $s7)

• Non-preserved registers are saved by
the caller of the function (e.g., $t0 -
$t9)

• Question: why a split? - not everything is
worth saving

Saved where?

• Register values are saved on the stack

• The top of the stack is held in $sp (stack-
pointer)

• The stack grows from high addresses to
low addresses

Register Saving Example

•save_registers.asm

Recursion

• This same setup handles nested function
calls and recursion - we can save $ra on
the stack

• Example: recursive_fibonacci.asm

