CS64 Week 7 Lecture |

Kyle Dewey

Overview

® Multiplexers

Multiplexers

Motivation

® At this point, you've seen a lot of
straightline circuits

® However, this doesn’t quite match up with
respect to what a processor does. Why!

Motivation

® At this point, you've seen a lot of
straightline circuits

® However, this doesn’t quite match up with
respect to what a processor does. Why!

® We don’t always do the same thing - it
depends on the instruction

® VWhat do we need here!?

Motivation

® At this point, you've seen a lot of
straightline circuits

® However, this doesn’t quite match up with
respect to what a processor does. Why!?

® We don’t always do the same thing - it
depends on the instruction

® VWhat do we need here!

® Some form of a conditional

Conditional

® Assume selector, A, B,and R all hold a
single bit

® How can we implement this using what we

have seen so far! (Hint: what does the
truth table look like?)

R (selector) ? A : B

(selector) 7 A

:

Rl Rr|lO|lO|RLr|O|]| O

R |l R R ROl O] O O
Rl ol rRr|lOo|l +—~r|l|Oo| r~r| O [l

1 PPl ool ol R] O] O

(selector) ? A : B

:

Rl Rr|lO|lO|RLr|O|]| O

Unreduced sum-of-products:
R = I!S!'AB + !SAB + SA!'B + SAB

R |l R R ROl O] O O
R |l ROl Ol R L] O O
Rl ol rRr|lOo|l +—~r|l|Oo| r~r| O [l

R (selector) ? A : B

Slala &

Unreduced sum-of-products:
R = I!S!'AB + !SAB + SA!'B + SAB

Reduced sum-of-products:
R = ISB + SA

R 1 PPl ool ol =] O]] O

Slight Modification

Original

R (selector) ? A : B

Modified
R = (selector) ? doThis () : doThat ()

Slight Modification

Original

R (selector) ? A : B

Modified
R = (selector) ? doThis () : doThat ()

Intended semantics: either doThis () or doThat () is

executed. Our formula from before doesn’t satisfy this
property:

R = !1S*doThat () + S*doThis ()

Slight Modification

Original

R (selector) ? A : B

Modified
R = (selector) ? doThis () : doThat ()

® Fixing this is hard, but possible
® |nvolves circuitry we'll learn later

® Oddly enough, this isn’t as big of a problem
as it seems, and it’s ironically faster than
doing just one or the other. Why?

Slight Modification

Original

R (selector) ? A : B

Modified
R = (selector) ? doThis () : doThat ()

® Oddly enough, this isn’t as big of a problem
as it seems, and it’s ironically faster than
doing just one or the other. Why! -
branches executed in parallel at the
hardware level. Faster because extra
circuitry is extra.

Multiplexer

® Component that does exactly this:
R = (selector) ? A : B

selector

Question

® Recall the arithmetic logic unit (ALU),
which is used to add, subtract, shift,
perform bitwise operations, etc.

® How might a multiplexer be useful for an
ALU?

;Opcode / Function

Add Unsigned 0/ 21pex
And ‘ E 0/ 24y,

Question

® Recall the arithmetic logic unit (ALU),
which is used to add, subtract, shift,
perform bitwise operations, etc.

® How might a multiplexer be useful for an
ALU!? - Do all operations at once in
parallel, and then use a multiplexer to
select the one you want

;Opcode / Function

Add Unsigned 0/ 21pex
And ‘ E 0/ 24y,

Example

® | et’s design a one-bit ALU that can do
bitwise AND and bitwise OR

® |t has three inputs: A, B,and S, along with
one output R

® S is a code provided indicating which
operation to perform; O for AND and 1 for

OR

Bigger Multiplexers

® Can have a multiplexer with more than two
Inputs

® Need multiple select lines in this case

® Question: how many select lines do we
need for a 4 input multiplexer?

Bigger Multiplexers

® Can have a multiplexer with more than two
Inputs

® Need multiple select lines in this case

® Question: how many select lines do we
need for a 4 input multiplexer? - 2. Values

of different lines essentially encode
different binary integers.

D C B A

=
S1

Z

Bigger Multiplexers

® VWe can build up bigger multiplexers from
2-input multiplexers. How?

