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Abstract

For most programming languages, context-free gram-
mars form the basis for syntactic validity. Most of the lit-
erature is focused on how to parse unambiguous context-
free grammars, but we observe that, in practice, real lan-
guages (including Swift) are sometimes ambiguous. This
paper proposes a new technique for parsing ambiguous
grammars: iterator-based parser combinators. Like tra-
ditional parser combinators, iterator-based parser combi-
nators allow for users to write their own parsing opera-
tions, and they are handled at the library level. In fact,
iterator-based parser combinators serve as a drop-in re-
placement for traditional parser combinators. However,
iterator-based parser combinators can compute all parses,
and they do so on demand, meaning that the only work that
is performed is specific to the parses actually used. We
implement an iterator-based parser combinator library in
Java, and apply it to parsing several globally and locally
ambiguous grammars. Our results show that the runtime
of them is low, particularly for the first valid parse, demon-
strating their promise for handling ambiguous grammars.

1. Introduction

Grammars are formal sets of rules which describe the
structure of valid sentences in a language. In program-
ming languages, grammars are used to determine if a given
program is syntactically valid or not. Grammars can be
unambiguous, meaning there is only one possible way to
apply the rules to show that a sentence is synatically well-
formed. Alternatively, they can be ambiguous, meaning
there are multiple ways to apply the rules, each yielding a
different successful parse of the input. For example, con-
sider the following grammar, which is intended to repre-
sent sums of numbers:

exp ::= NUM | exp '+' exp

This grammar defines the exp (expression) rule, stating
that an expression can either be a number (NUM), or two
expressions separated by +. The exp rule is recursively
defined, allowing expressions to be as deeply nested as

necessary. Some example sentences this grammar accepts
are 5, 6 + 7, and 1 + 2 + 3. With 1 + 2 + 3, this
can be read either as (1 + 2) + 3 (meaning the left-
most expression is 1 + 2), or as 1 + (2 + 3) (mean-
ing the rightmost expression is 2 + 3). This shows that
this grammar is ambiguous.

In programming languages, ambiguous grammars are
generally not ideal, as different possible parses can be dif-
ferent possible ways to execute the program. For example,
this issue was seen early in computing with the dangling
else problem [1], wherein the else portion of a nested if
statement could be potentially matched with different ifs
depending on how it was parsed. However, it can be dif-
ficult to completely avoid ambiguity in a grammar’s def-
inition, even in programming languages. Furthermore, a
grammar may merely be locally ambiguous [2], meaning
there is only one valid parse overall, but subportions of
a sentence may have multiple parses. For example, the
grammar for Apple’s Swift language [3] is ambiguous [4],
though in practice only locally ambiguous.

We observe that there are already a variety of techniques
and tools for writing parsers for unambiguous grammars,
including recursive descent parsers [5], ANTLR [6], and
parser combinators [7–10]. However, support for ambigu-
ous grammars is comparatively limited, despite the fact
that real programming languages make use of them. Addi-
tionally, some techniques force all parses to be computed
and stored before any of them can be used, which is im-
practical on very ambiguous grammars.

To address these issues, we propose a new way to effi-
ciently parse ambiguous grammars. Our approach is parser
combinator variant which serves as a drop-in replacement
for traditional parser combinators. Via careful use of it-
erators, we incrementally compute each parse on demand,
unlike techniques which perform all parses at once. We
implement our technique in Java as a library, and demon-
strate its ability to parse unambiguous grammars. Overall,
our contributions are as follows:

1. A new technique for parsing ambiguous grammars,
based on parser combinators (Section 3)
2. An evaluation of this technique’s runtime over several
ambiguous grammars (Section 4)



2. Background and Related Work

This section focuses on parser combinators, as our ap-
proach is based on them. We use the following grammar
in this section for illustrative purposes, where lowercase
letters are tokens in the input:

G ::= a | bGc

Individual programs are parsed to abstract syntax trees
(ASTs), which are a data structure representation of the
input program. The specific node types in an AST corre-
spond closely to the grammar. With respect to grammar G
above, there likely would be two AST nodes:
1. A leaf node representing a, hereafter referred to as
ANode.
2. An internal node representing bGc. This is an internal
node recursively using G, which itself is represented by an
AST node. We refer to this as BNode(r), where r is the
child node.

For example, the input bbacc would parse to the AST
node BNode(BNode(ANode)).

2.1. Traditional Parser Combinators

Parser combinators (PCs) are a popular technique for
writing parsers in functional languages [7, 8]. PCs be-
have much like recursive descent parsers, but abstract over
common details. The basic primitive value with PCs is a
parser, which is a single executable unit. A Java represen-
tation of a parser and related code is shown in Figure 1.
As shown, parsers have only a single method: parse.
parse takes a position p, indicating where in the input list
of tokens it should start parsing from. From there, parse
returns Res, where Res includes the specific value parsed
in (result), and the next position to start parsing from
(next). The value parsed in is intentionally encoded with
a type variable (A), permitting different parsers to parse in
values of different types. Res is wrapped in Optional,
so upon calling parse, one might receive either a Res as
expected, or an empty value. The empty value is used to
indicate parse failure, i.e., parse could not parse its input.
Conversely, on success, a single Res value is returned.

In contrast to recursive descent parsing, parsers exist as
explicit types with PCs, making it possible to write opera-
tions that work directly on parsers. This is commonly ex-
ploited to construct larger parsers from smaller ones. The
signatures of some common related operations and related
utilities are shown in Figure 2.

Figure 2’s token constructs a parser that reads in the
given token c, which for expository reasons is respresented
as a char. On success, the Character representation of
c is returned. In practice, token will read in whatever the
underlying type of the input tokens are instead of char.

public class Res<A> {
public final A result;
public final int next;
public Res(A a, int n) {
result = a; next = n;

}
}
public interface Parser<A> {
public Optional<Res<A>> parse(int p);

}

Figure 1. Definition of a parser and related code for tradi-
tional PCs.

@FunctionalInterface
public interface Thunk<A> {
public A execute();

}
@FunctionalInterface
public interface Function<A, B> {
public B execute(A a);

}
public class Pair<A, B> {
public final A first;
public final B second;
public Pair(final A a, final B b) {
first = a; second = b;

}
}
public static Parser<Character>
token(char c);

public static <A, B> Parser<Pair<A, B>>
and(Parser<A> a, Thunk<Parser<B>> b);

public static <A> Parser<A>
or(Parser<A> p1, Thunk<Parser<A>> p2);

public static <A> Parser<List<A>>
star(Parser<A> p);

public static <A, B> Parser<B>
map(Parser<A> p, Function<A, B> f);

Figure 2. Common PC-related types and operations.

Figure 2’s and runs two parsers in sequence, where the
second parser picks up where the first parser left off. The
values read in by and’s input parsers (A and B, respec-
tively) are grouped into a single Pair<A, B> if both suc-
ceed. The purpose of Thunk in and is because we only
need to construct the second parser (b) in the event that the
first parser (a) succeeded; if the first parser fails, then the
second parser will never be executed.

Figure 2’s or, like and, also executes the first parser
(p1) first. However, unlike and, if the first parser fails,
then or instead runs the second parser (p2). Phrased
another way, or will run the first parser that succeeds,



whereas and runs all parsers in sequence.
Figure 2’s starwill repeatedly apply a given parser (p)

to the input, building up a list of values that were parsed
in. Once p fails, the list is returned. If p initially fails, then
the returned list will be empty.

Figure 2’s map converts a parser of one type to another
type, using the provided function f. Specifically, if map’s
input parser (p) succeeds, then f is applied to p’s return
value. Otherwise, if p fails, then the parser returned by
map also fails.

Putting all these aforementioned helpers together, we
can define a parser for our example grammar G, shown
in Figure 3. The a() helper reads in an a token. Upon
success, a() uses map to create a’s AST representation
(ANode). The bGc() helper handles the bGc part of the
grammar; it first reads in a b, followed by a recursive call
to G (chained with and), followed by reading in a c. If
all of those subcomponents succeed, then map is used to
convert what was parsed in into a BNode. The function
passed to map extracts out the node from the recursive
call, and puts it into the new BNode. Finally, a() and
bGc() are combined together in the G() method via or.
Here we can see the value in Thunk; bGc() calls G(),
which itself calls bGc() recursively. Without Thunk, this
would create infinite recursion upon calling G. However,
with Thunk, the recursive call is only made when abso-
lutely necessary to continue parsing the input. Since the
input is of finite length, this breaks any infinitely recursive
chains, assuming the grammar itself is not left-recursive
(i.e., no rules recursively call themselves without first read-
ing at least one token, thus forcing recursive progress).

These helpers all neatly correspond to what is repre-
sentable with context-free grammars, making it relatively
easy to mechanically apply these helpers to match what
the grammar says. While we implement these helpers
ourselves, in practice, multiple libraries provide them
(e.g., scala-parser-combinators for Scala [10]
and Parsec for Haskell [9], among many others).

2.2. List-based PCs

One issue with PCs as described is that they are inappro-
priate for parsing ambigiuous grammars. With ambiguous
grammars, at best they will only generate a single parse. At
worst they will fail on any valid inputs which require back-
tracking. This issue is rooted in parse’s return type (Fig-
ure 1): Optional<Res<A>>. Optional either wraps
around one value, or is empty, meaning Optional can
only encode 0 - 1 possible parses. Even if multiple parses
are possible, Optional forces us to pick one, making
traditional PCs unsuitable for ambiguous grammars.

Fortunately we can swap out Optional for a differ-
ent type which can encode more than one possible parse.
Wadler [11] and Koopman [12] do exactly this, and re-

place Optional with List. Lists can still encode parse
failure (i.e., an empty list), but they can also encode any
number of successes (i.e., a list of length n where n > 0).
The helpers in Figure 2 admittedly need some tweaking to
work with a List-based representation, but the changes
are surprisingly minimal. With token, instead of return-
ing a single Character wrapped in an Optional on
success, we instead return a list holding a single value,
namely the Character representation of the char we
parsed in. On parse failure, token returns an empty list.

With or, instead of optionally executing a second
parser, we instead always execute both parsers, producing
two separate lists of successes. From there, the two lists
are appended together into a single result list. In this case,
failure means both parsers returned empty lists. Append-
ing two empty lists together leads to an empty result list,
naturally representing failure of both parsers.
and is more complex. Specifically, for every parse suc-

cess of the first parser, we must run the second parser.
Then, for every result of the second parser, we group it into
a Pair with the corresponding result of the first parser.
This is shown below in Python-like psuedocode, where a
and b are functions representing the first and second parser,
respectively. Res and Pair correspond to their defini-
tions from the prior section, and startPos is the initial
position we should start from for the and:

result = []
for resA in a(startPos):
for resB in b(resA.next):
p = Pair(resA.result, resB.result)
r = Res(p, resB.next)
result.append(r)

return result

There is, however, a major downside to switching to this
List-based approach: before any parse can be accessed,
the whole list must be constructed, so all parses must be
complete before any of them can be used. This makes
lists an impractical representation whenever many possi-
ble parses are expected.

3. Iterator-based PCs

Here is where we introduce our major innovation over
PCs for ambiguous grammars, which builds directly off of
the list-based PCs described in Section 2.2. We observe
that while List is one potential encoding of 0 - n values,
other possible encodings exist. In our case, iterators are
instead a much more suitable representation. One possible
basic iterator definition in Java is shown below:

public interface Iterator<A> {
public Optional<A> next();

}



public static Parser<Node> a() {
return map(token('a'), (Character c) -> new ANode());

}
public static Parser<Node> bGc() {

return map(and(token('b'),
() -> and(G(),

() -> token('c'))),
(Pair<Character, Pair<Node, Character>> pair) ->

new BNode(pair.second.first));
}
public static Parser<Node> G() {
return or(a(), () -> bGc());

}

Figure 3. Parser for grammar G using PCs.

With iterators, one would call the next method in order to
retrieve an element. Only a single element is returned for
each call to next. Once all elements have been iterated
over, next returns an empty result, hence Optional ap-
pearing in the code above.

Importantly, iterators separate the creation of the itera-
tor from the call to next. For example, one can define an
iterator that iterates over all possible integers (mathemati-
cally speaking), or some other infinitely large space. While
actually iterating over that space takes an infinite amount
of time, this does not automatically mean that constructing
the iterator will take an infinite amount of time. Specific to
parsing, this means if we define parse like so:

public Iterator<Res<A>> parse(int p);

. . . then we do not need to construct all possible parses
in parse. We can instead delay parse construction until
next is called. Better yet, each call to next only needs
to do the work necessary for whatever the next parse is.

Overall, with iterators, this means we can construct
parses on demand. Depending on the application in play, if
only a subset of parses are needed, then only the work nec-
essary for that subset needs to be performed. In the domain
of compilers, generally only one parse is used even if the
grammar is ambiguous, so an iterator-based representation
will only ever need to perform the work necessary for this
one parse.

Swapping out list-based PCs with iterator-based ver-
sions is surprisingly straightforward. From Dewey et
al. [13], both lists and iterators are additive monads, mean-
ing they share a common set of four key operations obey-
ing certain properties. The details of additive monads are
beyond the scope of this paper, but we found that PCs can
be implemented using only these four operations, greatly
simplifying the switch to iterators. Most importantly, just
as moving from Optional-based to list-based PCs did
not change the user-facing interface, switching from list-
based to iterator-based PCs does not change anything in

the user-facing interface. In other words, the exact same
code in Figure 3 works for all three PC implementations,
and the different implementations only change internal im-
plementation details within the helper functions (e.g., and
and or). Putting all this information together, we imple-
mented an iterator-based PC library in Java.

4. Evaluation

In this section, we evaluate iterator-based PCs on a mix
of globally and locally ambiguous grammars. These gram-
mars are shown in the first column of Table 1. For each
grammar, we generate a list of guaranteed parsable tokens
via stochastic grammars [14]. With stochastic grammars,
we perform a random recursive walk over the grammar,
generating tokens according to the path taken. The pars-
ing time can vary widely between grammars based on the
number of tokens in the input, so the number of tokens gen-
erated for each grammar was adjusted to try to keep overall
parsing time under 400 ms. After using stochastic gram-
mars to make a parsable token string for each grammar, we
parsed the same string of tokens 1,000 times using parsers
written with our approach. We separately record the av-
erage time taken for the first parse, as well as all parses.
Table 1 details our results.

For grammar S, it takes approximately 8,812X less time
to compute the first parse compared to all parses. This is
because S is highly ambiguous, and the number of pos-
sible parses grows exponentially with the number of to-
kens. For example, while a and aa only have one possible
parse apiece, a string of 25 a’s has over 75,000 possible
parses. A list-based PC must compute all of these, even if
only a single one is desired. In contrast, our iterator-based
PCs only need to do an amount of work proportional to
the number of parses needed. For the remaining gram-
mars, while all are at least somewhat locally ambiguous
due to all production rules sharing a prefix, none are glob-
ally ambiguous, so only one parse is possible. However,



Grammar Locally
Ambiguous

Globally
Ambiguous

Number of
Tokens

First
Parse (ms)

Total
Runtime (ms)

S ::= a | aS | aaS Yes Yes 25 0.03 264.36
D ::= ab | abD | aDb Yes No 100,000 19.61 39.75
E ::= ab | abE | aEb | aEa Yes No 50 70.16 341.68
F ::= a | abF Yes No 2,000 26.47 26.58

Table 1. Grammars used in our evaluation. First Parse (ms) is the average amount of time taken to get the first parse over
1,000 iterations, and Runtime (ms) is the average time taken to produce all parses for the same number of iterations.

we may still end up searching for a second parse which
does not exist, hence the total runtime is still often signifi-
cantly greater than the first parse. While we have not com-
pared our PC implementation to other ambiguous grammar
parsing techniques, the relatively short runtimes in Table 1,
particularly for the first parse, shows that our iterator-based
approach is nonetheless a viable parsing strategy.

5. Conclusion

Most parsing tools and techniques assume that a given
language’s grammar is unambiguous, but real program-
ming languages like Swift can nonetheless have ambigu-
ous grammars. As such, we still need a way to handle
ambiguous grammars. To that end, in this paper we have
presented iterator-based PCs, a new approach to parsing
ambiguous grammars. Iterator-based PCs offer all the ad-
vantages of traditional PCs, and serve as a drop-in replace-
ment. However, unlike traditional PCs, iterator-based PCs
can produce all possible parses. Moreover, these parses
are constructed as needed, saving significant resources in
the event that not all parses need to be generated. We
have demonstrated that these work over several unambigu-
ous and ambiguous grammars, and that the overall runtime
seems low. For future work, we hope to evaluate these
against other parsing techniques for handling both ambigu-
ous and unambiguous grammars, to get a better sense of
how they perform. We also wish to use these to handle
larger grammars, including those of popular programming
languages.
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