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Teaser

® We identify several key assumptions which are
made in the domain of SMT fuzzers

® We seek to empirically show these assumptions

are false, and we already have data showing that
common wisdom is incorrect

® We have already found over a dozen bugs across

several popular SMT solvers, including Z3, CVCA4,
MathSATS5, and Boolector (still plenty to do)

® |ncluding incorrect results

® Most promptly fixed by developers (1 week)
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® Motivation and background




Motivation

® SMT solvers are frequently employed in
automated testing, synthesis, and
verification

® Often assumed to be correct, and their
correctness is vital

ZB MathSAT 5



Motivation

® Problem: SMT solvers can be, and often are,
buggy

® Bugs are potentially devastating for
downstream applications

® Automated testing: input tests the wrong
component

® Synthesis: generated program does not
have specified behavior

® Verification: proof does not actually hold



Goal

® Find bugs in SMT solvers, before they cause
downstream problems

® We employ black-box language fuzzing
techniques for this purpose

® The inputs for SMT solvers are
formulas written in SMT-LIB, a

standardized language
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® We did not invent language fuzzing

Differential Testing
for Software

Differential testing, a form of random testing,
is a component of a mature testing technology
for large software systems. It complements
regression testing based on commercial test
suites and tests locally developed during prod-
uct development and deployment. Differential
testing requires that two or more comparable
systems be available to the tester. These sys-
tems are presented with an exhaustive series
of mechanically generated test cases. If (we
might say when) the results differ or one of

William M. McKeeman

The Testing Problem

Successful commercial computer systems contain tens
of millions of lines of handwritten software, all of
which is subject to change as competitive pressures
motivate the addition of new features in each release.
As a practical matter, quality is not a question of cor-
rectness, but rather of how many bugs are fixed and
how few are introduced in the ongoing development
process. If the bug count is increasing, the software is
deteriorating.

Qualit
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Introducing jsfunfuzz

| wrote a fuzzer called jsfunfuzz for testing the JavaScript engine in Firefox.
Window, Shaver, and | announced it at Black Hat earlier today, as part of
Mozilla's presentation, "Building and Breaking the Browser".

It tests the JavaScript language engine itself, not the DOM. (That means that
it works with language features such as functions, objects, operators, and
garbage collection rather than DOM objects accessed through "window" or
"document”.)

It has found about 280 bugs in Firefox's JavaScript engine, over two-thirds
of which have already been fixed (go Brendan!). About two dozen were
memory safety bugs that we believe were likely to be exploitable to run
arbitrary code.

In the presentation, | speculated as why it has been able to find so many
bugs:
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® We did not invent language fuzzing
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Differential Testing Introducing jsfunfuzz

fOf SOftware | wrote a fuzzer called jsfunfuzz for testing the JavaScript engine in Firefox.

Window, Shaver, and | announced it at Black Hat earlier today, as part of

Finding and Understanding Bugs in C Compilers

Xuejun Yang  Yang Chen  FEric Eide  John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract int foo (void) {

Compilers should be correct. To improve the quality of C compilers, signed char x
we created Csmith, a randomized test-case generation tool, and unsigned char
spent three years using it to find compiler bugs. During this period return x > y;
we reported more than 325 previously unknown bugs to compiler
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Fuzzing with Code Fragments

Christian Holler
Mozilla Corporation”®
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Abstract

Fuzz testing 1s an automated technique providing random
data as input to a software system in the hope to expose
a vulnerability. In order to be effective, the fuzzed input
must be common enough to pass elementary consistency
checks; a JavaScript interpreter, for instance, would only
accept a semantically valid program. On the other hand,
the fuzzed inout must be uncommon enough to trigger

Kim Herzig
Saarland University
herzig@cs.uni-saarland.de

Andreas Zeller
Saarland University
zeller@cs.uni-saarland.de

JavaScript interpreter must follow the syntactic rules of
JavaScript. Otherwise, the JavaScript interpreter will re-
ject the input as invalid, and effectively restrict the test-
ing to its lexical and syntactic analysis, never reaching
areas like code transformation, in-time compilation, or
actual execution. To address this issue, fuzzing frame-
works include strategies to model the structure of the de-
sired input data; for fuzz testing a JavaScript interpreter,
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Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period

int foo (void) {
signed char x
unsigned char y
return x > y;

we reported more than 325 previously unknown bugs to compiler

developers. Every compiler we tested was found to crash and also

1;
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® We did not invent language fuzzing
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Fuzzing with Code Fragments

Kim Herzig
Saarland University

herzig @cs.uni-saarland.de zeller@cs.uni-saarland.de

Andreas Zeller

Saarland University

Announcing cross_fuzz, a potential 0-day in circulation, and more

| am happy to announce the availability of cross fuzz - a surprisingly effective but notoriously annoying cross-document DOM binding
fuzzer that helped identify about one hundred bugs in all browsers on the market - many of said bugs exploitable - and is still finding

more.

The fuzzer owes much of its efficiency to dynamically generating extremely long-winding sequences of DOM operations across multiple
documents, inspecting returned objects, recursing into them, and creating circular node references that stress-test garbage collection

mechanisms.

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
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int foo (void) {
signed char x = 1;
unsigned char y = 255;
return x > y;

}

5 been able to find so many
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Fuzzing and Delta-Debugging SMT Solvers

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Abstract. SMT solvers are widely used as core engines in many applications. There-
fore, robustness and correctness are essential criteria. Current testing techniques used
by developers of SMT solvers do not satisfy the high demand for correct and robust
solvers, as our testing experiments show. To improve this situation, we propose to
complement traditional testing techniques with grammar-based blackbox fuzz test-
ing, combined with delta-debugging. We demonstrate the effectiveness of our ap-
proach and report on critical bugs and incorrect results which we found in current
state-of-the-art SMT solvers for bit-vectors and arrays.




Background

® ..nor are we the first to apply language

fuzzing to SMT solvers

Automated Testing and Debugging
of SAT and QBF Solvers

Robert Brummayer, Florian Lonsing and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Abstract. Robustness and correctness are essential criteria for SAT and
QBF solvers. We develop automated testing and debugging techniques
Abs designed and optimized for SAT and QBF solver development. Our fuzz
fore, testing techniques are able to find critical solver defects that lead to
by d crashes, invalid satisfying assignments and incorrect satisfiability results.
solvd  Moreover, we show that sequential and concurrent delta debugging tech-
comyp niques are highly effective in minimizing failure-inducing inputs.

.
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proach and report on critical bugs and incorrect results which we found in current
state-of-the-art SMT solvers for bit-vectors and arrays.




Existing VVeaknesses

® Focus has been on syntax, not semantics

® E g, formulas that syntactically contain
0, as opposed to formulas that evaluate
to 0 somewhere

® Tests crafted to “look™ like typical inputs, or
be time-consuming to solve

® Not focused on what is difficult to
implement




Common Wisdom

Large inputs mean more bugs

Random search performs better instead of
bounded depth-first

Not just for SMT solvers, but for language
fuzzing overall

Very little empirical evidence backing these
claims (blog posts and a technical report)




Hypotheses (1, 2)

Semantics-guided approaches can find bugs that
purely syntax-oriented approaches practically
cannot

® Suggested to be true by our own prior work

Constraining the search space to focus on
different subsets can effectively find additional
bugs

® Purely syntactic constraining shown effective
in Swarm Testing




Hypotheses (3, 4)

® |arge inputs are not necessarily better for
finding bugs

® Suggested to be true by the need for input
reducers, and by our own prior work

® Random search is not necessarily better than
bounded depth-first search

® Suggested to be true by our own prior work




Key Observation

® These four hypotheses are orthogonal
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Common Wisdom

The highlighted points work well...
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Common Wisdom
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Common Wisdom

...and these highlighted points are atypical.
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Overall Design
Philosophy

® Gather data for each point in this 4D
space, specific to SMT solvers

® Determine which setups find the most
bugs, and which ones find the same bugs

® Ultimately, figure out which setups
work well and which do not for SMT
solvers




Rest of Talk

How each of these positions in the diagram
can be filled in, forming different fuzzers

Small Big Syntax Semantic
Inputs  Inputs Based Based

Random All
Search Features

Bounded Feature
DES Subsets




Qutline

® Developing SMT fuzzers




Traditional Syntax-Based

Fuzzers

Necessary to have, but only for comparison. Not the focus

of this work.
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Semantic-Based Fuzzers

Number of different strategies, depending on the
particular semantics
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ASE’ |5 Paper

® |n prior work, we looked at fuzzing the
typechecker in the Rust langauge

® Focus on static semantics: types

® Guiding principles from that work can be
applied to fuzzing SMT solvers




Application to SMT Solvers

® SMT-LIB is statically typed, and typing rules are
described (though not formalized)

® These typing rules can be used to generate
well-typed programs

® Suitable for ensuring that solver
typecheckers accept inputs properly

® Suitable for differential testing

® Requires implementing a typechecker for SMT-
LIB using constraint logic programming (CLP)




A Twist for Dynamic
Semantics

® For a static semantics: implement typing
rules in CLP

® For a dynamic semantics: implement a
definitional oracle

® |nputs generated explore the
semantics, by construction

® Edge cases fall out naturally (e.g,,
division by zero as a special case)




Consistency-Based
Testing

® Another guiding principle from ASE’l 5:
devise methods to test internal consistency

® Based on generating pairs of inputs, which
should behave in the same way

e Eg,both SAT or UNSAT

® Generally do not know true correct result




Consistency for SMT-LIB

® We devise two novel approaches for finding
consistency bugs in SMT-LIB

® One: equivalence through translation

® [wo: logical implications of
mathematical functions




Translation Equivalence

® SMT-LIB features a variety of theories, which
describe different kinds of domains and
operations that can be reasoned about

® E.g., integers, bitvectors, floating point

® Some queries can be translated between
different theories, and should behave the
same after translation




Translation Equivalence

Example
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Y 1s a one bilit bitvector
Z 18 X + Y

assert 72 == 1
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X 18 a one bit bitvector
Y 1s a one bilit bitvector
Z 18 X + Y

assert 72 == 1

Theory of Bitvectors

Theory of Integers

= (1f T == 2 then 0 else T)
assert 7




Exploiting Mathematical

Purity for Consistency
Checking




Implication of
Mathematical Functions

® SMT-LIB is a mathematically pure language

® Solvers generally implement the theory of
uninterpreted functions with equality (EUF),
which essentially reasons over all possible
function definitions




Exploiting Purity to
Find Consistency Bugs

® |f something holds in EUF, it must hold for
any other theory
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Exploiting Purity to
Find Consistency Bugs

® |f something holds in EUF, it must hold for
any other theory

integer add(1l, == 1nteger add(l, 2)

bitvec add(l, 2) == bitvec add(l, 2)




Exploiting Purity to
Find Consistency Bugs

® Similarly, if something does not hold in
another theory, it must not hold in EUF




Exploiting Purity to
Find Consistency Bugs

® Similarly, if something does not hold in
another theory, it must not hold in EUF

integer add(l, 2) != integer add (2, 3)




Exploiting Purity to
Find Consistency Bugs

® Similarly, if something does not hold in
another theory, it must not hold in EUF

integer add(l, 2) != integer add (2, 3)




Semantic Feature
Subsets

Many possible different instantiations
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Semantic Feature
Subsets

® |n our case, we focus specifically on the
theory of floating point

® Bleeding edge (only two production-
quality solvers to test against)

® Features a semi-formal semantics

® Quite complex




Semantic Feature
Subsets

® We plan to focus on computations that
deal with NaN, +/- 0, +/- o0, subnormal
numbers

e All intuitively difficult

® Some have been challenging to
implement ourselves

® Not yet complete




Varying Input Sizes

Fairl_y trivial, and generall_y easil_y composable.
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Search Strategy Variation

Adjusting the search strategy is more difficult, and requires
novel techniques

Syntax Semantic

Based Based

All Our prior
Traditional Traditional P
Features work
. Traditional
Our prior - Feature .
work G w/ Swarm
wLeers Testing

30



Search Strategy

® Historically, the search strategy is
fundamentally defined by the underlying
generation technique, and cannot be varied
without devising a whole new technique

® E.g. cannot run the same fuzzer in a
random mode and an exhaustive mode

This is true even for CLP




Novel Abstraction

® VWe define a novel abstraction in CLP for
varying the search strategy dynamically

® Fuzzer code is written in a strategy-
agnostic way

® Accomplished via the use of a CLP
metainterpreter




Abstraction ldea

® Ultimately, the abstraction is parameterized
by a nondeterministic relation choose:

choose ([C], C)

Given a list of

choices... ...choose one
nondeterministically




Possible Instantiations

Randomly select a single element: random
search without backtracking

Nondeterministically select all in a fixed
order: depth-first search

Many more possible, including more
complex ones seen in advanced fuzzers




Caveats

® Not all search strategies fit into this
abstraction

® E. g, breadth-first search

® Fundamentally, choice is applied

when selecting the next child to
process in a built-in depth-first search

® Still encompasses all search strategies in
practice which we are aware of




In Summary

We know how to cover each cell. Onto implementation
and evaluation!

Small Big Syntax Semantic
Inputs  Inputs Based Based

Random All
Search Features

Bounded Feature
DES Subsets
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Qutline

® FEvaluation and results so far




Fuzzers Implemented

so Far




Traditional Syntactic
Fuzzer

Preexisting, thanks to others
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Equivalency-Based Fuzzer

Uses translation between the theory of bitvectors and the
theory of integers
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Fuzzer Based on Well-
Typedness

Generates well-typed SMT-LIB formulas
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Remaining Fuzzers

® Still many fuzzers left to implement
® All are planned out

® Key point: most spaces are empty, but we
have enough to compare against more
traditional fuzzing strategies




Results so Far

® Traditional fuzzer: nothing on Z3 in
past year; unknown for other solvers

® Direct from the Z3 team

® Equivalency-based fuzzer: nothing so far
(approximately two weeks)

® Fuzzer based on well-typed programs: 15
bugs




Bugs Found

Include crashes and incorrect results
® Bitvector division by zero is tricky

® Floating point is problematic on
numbers consisting of just a few bits

Surprisingly, quite a few in Z3

One required communication with
standards committee

Most fixed within one week of reporting




Qutline

® Conclusion




Key Points

® Common wisdom: large inputs are
necessary to find bugs

® False:all bugs found involve small
formulas. Some become exponentially
less likely with larger formulas

® Common wisdom: random search is
necessary to find bugs

® False: at least for small formulas,
depth-first search works fine




In Conclusion

While this is still incomplete, we have
already accumulated some evidence against
the common wisdom

We are transitively improving the reliability
of popular SMT solvers

Still lots more to do




